

ADVANCED GCE UNIT MATHEMATICS

Further Pure Mathematics 3 MONDAY 18 JUNE 2007

Morning

4727/01

Time: 1 hour 30 minutes

Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

© OCR 2007 [H/102/2700]

OCR is an exempt Charity

[Turn over

- 1 (i) By writing z in the form $re^{i\theta}$, show that $zz^* = |z|^2$. [1]
 - (ii) Given that $zz^* = 9$, describe the locus of z.
- 2 A line *l* has equation $\mathbf{r} = 3\mathbf{i} + \mathbf{j} 2\mathbf{k} + t(\mathbf{i} + 4\mathbf{j} + 2\mathbf{k})$ and a plane Π has equation 8x 7y + 10z = 7. Determine whether *l* lies in Π , is parallel to Π without intersecting it, or intersects Π at one point.

[5]

[2]

3 Find the general solution of the differential equation

$$\frac{d^2 y}{dx^2} - 6\frac{dy}{dx} + 8y = e^{3x}.$$
 [6]

4 Elements of the set $\{p, q, r, s, t\}$ are combined according to the operation table shown below.

:	p	q	r	S	t
p	t	s p q t r	p	r	q
q	s	p	q	t	r
r	p	q	r	S	t
S	r	t	S	q	p
t	q	r	t	p	5

- (i) Verify that q(st) = (qs)t.
- (ii) Assuming that the associative property holds for all elements, prove that the set $\{p, q, r, s, t\}$, with the operation table shown, forms a group G. [4]
- (iii) A multiplicative group H is isomorphic to the group G. The identity element of H is e and another element is d. Write down the elements of H in terms of e and d. [2]
- 5 (i) Use de Moivre's theorem to prove that

$$\cos 6\theta = 32\cos^6\theta - 48\cos^4\theta + 18\cos^2\theta - 1.$$
 [4]

(ii) Hence find the largest positive root of the equation

$$64x^6 - 96x^4 + 36x^2 - 3 = 0,$$

giving your answer in trigonometrical form.

[4]

[2]

6 Lines l_1 and l_2 have equations

$$\frac{x-3}{2} = \frac{y-4}{-1} = \frac{z+1}{1}$$
 and $\frac{x-5}{4} = \frac{y-1}{3} = \frac{z-1}{2}$

respectively.

- (i) Find the equation of the plane Π_1 which contains l_1 and is parallel to l_2 , giving your answer in the form $\mathbf{r.n} = p$. [5]
- (ii) Find the equation of the plane Π_2 which contains l_2 and is parallel to l_1 , giving your answer in the form $\mathbf{r.n} = p$. [2]
- (iii) Find the distance between the planes Π_1 and Π_2 . [2]
- (iv) State the relationship between the answer to part (iii) and the lines l_1 and l_2 . [1]
- 7 (i) Show that $(z e^{i\phi})(z e^{-i\phi}) \equiv z^2 (2\cos\phi)z + 1.$ [1]
 - (ii) Write down the seven roots of the equation $z^7 = 1$ in the form $e^{i\theta}$ and show their positions in an Argand diagram. [4]
 - (iii) Hence express $z^7 1$ as the product of one real linear factor and three real quadratic factors. [5]
- 8 (i) Find the general solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + y\tan x = \cos^3 x,$$

expressing y in terms of x in your answer.

(ii) Find the particular solution for which y = 2 when $x = \pi$. [2]

[8]

- 9 The set S consists of the numbers 3^n , where $n \in \mathbb{Z}$. (\mathbb{Z} denotes the set of integers $\{0, \pm 1, \pm 2, \dots \}$.)
 - (i) Prove that the elements of S, under multiplication, form a commutative group G. (You may assume that **addition** of integers is associative and commutative.) [6]
 - (ii) Determine whether or not each of the following subsets of S, under multiplication, forms a subgroup of G, justifying your answers.
 - (a) The numbers 3^{2n} , where $n \in \mathbb{Z}$. [2]
 - (b) The numbers 3^n , where $n \in \mathbb{Z}$ and $n \ge 0$. [2]
 - (c) The numbers $3^{(\pm n^2)}$, where $n \in \mathbb{Z}$. [2]

_

1 (i) $z z^* = r e^{i\theta} \cdot r e^{-i\theta} = r^2 = z ^2$	B1 1	For verifying result AG
(ii) Circle		For stating circle
Centre $0 (+0i) OR (0, 0) OR O$, radius 3	B1 2	For stating correct centre and radius
	3	
2 <i>EITHER</i> : $(\mathbf{r} =) [3+t, 1+4t, -2+2t]$	M1	For parametric form of <i>l</i> seen or implied
8(3+t) - 7(1+4t) + 10(-2+2t) = 7	M1 A1	For substituting into plane equation
\Rightarrow (0t) + (-3) = 7 \Rightarrow contradiction	A1	For obtaining a contradiction
<i>l</i> is parallel to Π , no intersection	B1 5	For conclusion from correct working
$OR: [1, 4, 2] \cdot [8, -7, 10] = 0$	M1	For finding scalar product of direction vectors
$\Rightarrow l$ is parallel to Π	A1	For correct conclusion
(3, 1, -2) into П	M1	For substituting point into plane equation
$\Rightarrow 24 - 7 - 20 \neq 7$	A1	For obtaining a contradiction
<i>l</i> is parallel to Π , no intersection	B1	For conclusion from correct working
<i>OR</i> :Solve $\frac{x-3}{1} = \frac{y-1}{4} = \frac{z+2}{2}$ and $8x - 7y + 10z = 7$		
eg $y - 2z = 3$, $2y - 2 = 4z + 8$	M1 A1	For eliminating one variable
	M1	For eliminating another variable
eg $4z + 4 = 4z + 8$	A1	For obtaining a contradiction
<i>l</i> is parallel to Π , no intersection	B1	For conclusion from correct working
	5	
3 Aux. equation $m^2 - 6m + 8 (= 0)$	M1	For auxiliary equation seen
m = 2, 4	A1	For correct roots
$CF (y =) Ae^{2x} + Be^{4x}$	A1√	For correct CF. f.t. from their <i>m</i>
PI $(y =) Ce^{3x}$	M1	For stating and substituting PI of correct form
$9C - 18C + 8C = 1 \Longrightarrow C = -1$	A1	For correct value of <i>C</i>
$GS \ y = Ae^{2x} + Be^{4x} - e^{3x}$	B1√ 6	For GS. f.t. from their CF + PI with 2 arbitrary constants in CF and none in PI
	U	

B1		For obtaining <i>s</i>
B1	2	For obtaining <i>s</i>
B1		For stating closure with reason
B1		For stating identity <i>r</i>
M1		For checking for inverses
A1	4	For stating inverses OR For giving sufficient explanation to justify each element has an inverse eg r occurs once in each row and/or column
B1		For stating identity <i>r</i>
M1		For attempting to establish a generator $\neq r$
A1		For showing powers of p ($OR q$, s or t) are different elements of the set
A1		For concluding $p^5(ORq^5, s^5 \text{ or } t^5) = r$
B2	2	For stating all elements AEF eg d^{-1} , d^{-2} , dd
M1		For expanding (real part of) $(c+is)^6$ at least 4 terms and 1 evaluated binomial coefficient
		needed
A1		For correct expansion
2.01		
MI		For using $s^2 = 1 - c^2$
A1	4	For correct result AG
M1		For obtaining a numerical value of cos 60
A1		For any correct solution of $\cos 6\theta = \frac{1}{2}$
M1		For stating or implying at least 2 values of θ
A1	4	For identifying $\cos \frac{1}{18} \pi$ AEF as the largest positive root
		from a list of 3 positive roots OR from general solution
		OR from consideration of the cosine function
	B1 B1 B1 M1 A1 B1 M1 A1 B2 [8] M1 A1 B2 [8] M1 A1 B1 M1 A1 M1	B1

$6 \mathbf{(i)} \mathbf{n} = l_1 \times l_2$	B1	For stating or implying in (i) or (ii) that n is perpendicular to l_1 and l_2
$\mathbf{n} = [2, -1, 1] \times [4, 3, 2]$	M1*	For finding vector product of direction vectors
n = k[-1, 0, 2]		For correct vector (any k)
[3, 4, -1]. $k[-1, 0, 2] = -5k$	M1 (*dep)	For substituting a point of l_1 into r.n
$\mathbf{r} \cdot [-1, 0, 2] = -5$	A1 5	For obtaining correct <i>p</i> . AEF in this form
(ii) $[5, 1, 1] \cdot k[-1, 0, 2] = -3k$	M1	For using same n and substituting a point of l_2
$\mathbf{r} \cdot [-1, 0, 2] = -3$	A1√ 2	For obtaining correct p . AEF in this form f.t. on incorrect n
(iii) $d = \frac{ -5+3 }{\sqrt{5}} OR d = \frac{ [2,-3,2] \cdot [-1,0,2] }{\sqrt{5}}$	M1	For using a distance formula from their equations Allow omission of
<i>OR d</i> from (5, 1, 1) to $\Pi_1 = \frac{ 5(-1) + 1(0) + 1(2) + 5 }{\sqrt{5}}$		
<i>OR d</i> from (3, 4, -1) to $\Pi_2 = \frac{ 3(-1) + 4(0) - 1(2) + 3 }{\sqrt{5}}$		
$OR[3-t, 4, -1+2t] \cdot [-1, 0, 2] = -3 \implies t = \frac{2}{5}$		<i>OR</i> For finding intersection of \mathbf{n}_1 and Π_2 or \mathbf{n}_2 and
$OR \ [5-t, 1, 1+2t] \cdot [-1, 0, 2] = -5 \implies t = -\frac{2}{5}$		П
$d = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} = 0.894427\dots$	A1√ 2	For correct distance AEF f.t. on incorrect n
(iv) d is the shortest OR perpendicular distance between l_1 and l_2	B1 1	For correct statement
	10	
$(ai\phi + a^{-i\phi})$, <u> </u>	
7 (i) $(z - e^{i\phi})(z - e^{-i\phi}) \equiv z^2 - (2)z \frac{(e^{i\phi} + e^{-i\phi})}{(2)} + 1$	B1 1	For correct justification AG
$\equiv z^2 - (2\cos\phi)z + 1$		
(ii) $z = e^{\frac{2}{7}k\pi i}$	B1	For general form OR any one non-real root
	D1	For other roots specified
for $k = 0, 1, 2, 3, 4, 5, 6 OR 0, \pm 1, \pm 2, \pm 3$	B1	(<i>k</i> =0 may be seen in any form, eg 1, e^0 , $e^{2\pi i}$)
		For answers in form $\cos \theta + i \sin \theta$ allow maximum
		B1 B0
1re		
	B1	For any 7 points equally spaced round unit circle (circumference need not be shown)
	B1 4	For 1 point on + ^{ve} real axis, and other points in correct quadrants
(iii) $(z^7 - 1 =) (z - 1)(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$	M1	For using linear factors from (ii), seen or implied
$(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{2}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{6}{7}\pi i})$		
$= (z - e^{\frac{2}{7}\pi i})(z - e^{-\frac{2}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{6}{7}\pi i}) \times$	M1	For identifying at least one pair of complex conjugate factors
$\times (z-1)$	B1	For linear factor seen
$=(z^2-(2\cos\frac{2}{7}\pi)z+1)\times$	Al	For any one quadratic factor seen
$(z^{2} - (2\cos\frac{4}{7}\pi)z + 1) \times (z^{2} - (2\cos\frac{6}{7}\pi)z + 1) \times$	A1 5	For the other 2 quadratic factors and expression written as product of 4 factors
$\times (z-1)$	10	

-

-

8 (i) Integrating factor $e^{\int \tan x (dx)}$	B1	For correct IF
$= e^{-\ln \cos x}$	M1	For integrating to ln form
$=(\cos x)^{-1} OR \sec x$	A1	For correct simplified IF AEF
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(y(\cos x)^{-1} \right) = \cos^2 x$	В1√	For $\frac{d}{dx}(y)$. their IF = $\cos^3 x$. their IF
$y(\cos x)^{-1} = \int \frac{1}{2} (1 + \cos 2x) (dx)$	M1 M1	For integrating LHS For attempting to use $\cos 2x$ formula <i>OR</i> parts for $\int \cos^2 x dx$
$y(\cos x)^{-1} = \frac{1}{2}x + \frac{1}{4}\sin 2x \ (+c)$	A1	For correct integration both sides AEF
$y = \left(\frac{1}{2}x + \frac{1}{4}\sin 2x + c\right)\cos x$	A1 8	For correct general solution AEF
(ii) $2 = (\frac{1}{2}\pi + c) \cdot -1 \Rightarrow c = -2 - \frac{1}{2}\pi$	M1	For substituting $(\pi, 2)$ into their GS and solve for c
$y = \left(\frac{1}{2}x + \frac{1}{4}\sin 2x - 2 - \frac{1}{2}\pi\right)\cos x$	A1 2	For correct solution AEF
	10	
9 (i) $3^n \times 3^m = 3^{n+m}, n+m \in \mathbb{Z}$	B1	For showing closure
$(3^p \times 3^q) \times 3^r = (3^{p+q}) \times 3^r = 3^{p+q+r}$	M1	For considering 3 distinct elements, seen bracketed 2+1 or 1+2
$= 3^{p} \times (3^{q+r}) = 3^{p} \times (3^{q} \times 3^{r}) \Longrightarrow \text{ associativity}$	A1	For correct justification of associativity
Identity is 3 ⁰	B1	For stating identity. Allow 1
Inverse is 3^{-n}	B1	For stating inverse
$3^n \times 3^m = 3^{n+m} = 3^{m+n} = 3^m \times 3^n \Longrightarrow$ commutativity	B1 6	For showing commutativity
(ii) (a) $3^{2n} \times 3^{2m} = 3^{2n+2m} \left(=3^{2(n+m)}\right)$	B1*	For showing closure
Identity, inverse OK	B1 (*dep) 2	For stating other two properties satisfied and hence a subgroup
(b) For 3^{-n} ,	M1	For considering inverse
$-n \notin \text{subset}$	A1 2	For justification of not being a subgroup
		3^{-n} must be seen here or in (i)
(c) <i>EITHER</i> : eg $3^{1^2} \times 3^{2^2} = 3^5$	M1	For attempting to find a specific counter-example of closure
$\neq 3^{r^2} \Rightarrow$ not a subgroup	A1 2	For a correct counter-example and statement that it is not a subgroup
$OR: \ 3^{n^2} \times 3^{m^2} = 3^{n^2 + m^2}$	M1	For considering closure in general
$\neq 3^{r^2}$ eg $1^2 + 2^2 = 5 \implies$ not a subgroup	A1	For explaining why $n^2 + m^2 \neq r^2$ in general and
	12	statement that it is not a subgroup